

2RMHX y 2RMKX

Bancos automáticos para corrección del factor de potencia

Línea modular 2RMHX y 2RMKX

QUIÉNES SOMOS

Somos una empresa argentina fundada en 1958, desde nuestros orígenes nos dedicamos a la fabricación de bancos de capacitores para uso en corriente alterna, para aplicarlos en circuitos de iluminación, motores y sistemas de corrección del factor de potencia.

Gracias a años de experiencia y más de mil proyectos entregados con éxito, nos especializamos en la ingeniería de corrección de factor de potencia y filtrado de armónicas, desarrollando soluciones en baja y media tensión con sistemas automáticos. aplicando las modernas tecnologías de filtros antirresonantes con distintos tipos de filtrado de corrientes armónicas y corrección dinámica en tiempo real.

Hoy, atendemos diferentes segmentos de mercado en la distribución pública de energía haciendo la ingeniería, el diseño y construcción de grandes bancos de capacitores automáticos en media tensión, así como también, la automatización de la compensación reactiva para ahorro de energía y aumento de capacidad de suministro de subestaciones y líneas de distribución en baja tensión.

Línea modular 2RMHX y 2RMKX

PARA INSTALACIONES CON THD-V > 3%

Con el tiempo todas las plantas industriales han incorporado cargas no lineales que generan una gran cantidad de corrientes armónicas que son incompatibles con los capacitores. Causas:

- Arrancadores suaves
- Variadores de velocidad
- Fuentes de poder ininterrumpida (UPS)
- Computadoras
- · Lámparas de descarga

Un banco de capacitores convencional para la corrección del factor de potencia puede entrar en resonancia con el transformador a una frecuencia de alguna corriente armónica existente y causar que se amplifique varias veces, sobrecargando de esta manera al banco de capacitores y al transformador. Estos se verán afectados con el tiempo pero en forma instantánea aparecen sobre-tensiones armónicas que pueden llegar a dañar otras cargas sensibles que estén en paralelo, tales como PLCs de control de procesos, lámparas de iluminación o sistemas de computación, y que causan costos altísimos por pérdidas de producción y material.

Este cambio sustancial en la composición de las cargas eléctricas industriales ha llevado a que hoy en día la mayoría de los bancos de capacitores para la industria requieran reactores anti-resonantes para evitar la posibilidad de resonancia paralelo y también filtrar parcialmente la armónica predominante en las instalaciones. Por este motivo deben realizarse mediciones durante los distintos usos de las cargas que las generan para dimensionar correctamente los reactores de desintonía. Cuando las cargas existentes supera el 15% del total puede determinarse rápidamente la necesidad de utilizar reactores para la compensación. De manera mas exacta deben utilizarse reactores en todo caso donde las mediciones de THD-V > 3% o THD-I > 10% (Distorsión armónica total de tensión/corriente)

Línea modular 2RMHX y 2RMKX

PARA INSTALACIONES CON THD-V > 3%

Los bancos automáticos para la corrección del factor de potencia Elecond línea 2RMHX o 2RMKX Premium están construidos sobre gabinetes modulares de hasta 400 KVar por columna con su correspondiente seccionador de 800 A. Se encuentra cubierto por pintura de color gris claro RAL 7035.

El diseño interior también es modular, realizado con bandejas que soportan individualmente los fusibles, contactor y hasta 50 KVar en 400V con capacitores en 440V o 480V de tensión nominal.

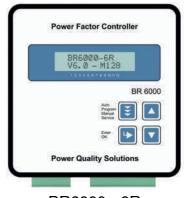
Su capacidad modular permite adquirir inicialmente una potencia determinada y en caso de requerir una mayor capacidad en el futuro poder ampliarla hasta 400 KVar totales sin requerir la expansión de las instalaciones existentes.

El gabinete se encuentra compartimentado con un segmento dedicado a los capacitores y otro designado a los reactores. Con sistemas de ventilación forzada independientes para mantener aisladas ambas zonas que poseen temperaturas operativas muy diferentes.

Los reactores anti-resonantes se ofrecen en desintonías al 5,67%, 7%, y 14% según cual sea el orden de la armónica predominante dentro de la red:

· 3ra: 14% de desintonía

5ya y 7ma: 7% de desintoníaMúltiples: 5,67% de desintonía


Capacitores encapsulados en resina e impregnados en gas							
Modelo	KVar a	Configuración	Dimensiones				
WIOGEIO	400 V	estándar	AxWxP				
2RMH/KX1250	125	25 + 50 + 50	2370 x 600 x 600				
2RMH/KX1500	150	25 + 25 + 50 + 50	2370 x 600 x 600				
2RMH/KX1750	175	25 + 3x50	2370 x 600 x 600				
2RMH/KX2000	200	4x50	2370 x 600 x 600				
2RMH/KX2250	225	25 + 4x50	2370 x 1000 x 600				
2RMH/KX2500	250	5x50	2370 x 1000 x 600				
2RMH/KX2750	275	25 + 5x50	2370 x 1000 x 600				
2RMH/KX3000	300	6x50	2370 x 1000 x 600				
2RMH/KX3500	350	7x50	2370 x 1000 x 600				
2RMH/KX4000	400	8x50	2370 x 1000 x 600				

Consultar por configuraciones alternativas: Potencia total, cantidad de pasos, controlador, filtros de armónicos, reactores de descarga, fusibles **y seccionadores, etc.**

Controladores BR6000 y BR7000

REGULACIÓN INTELIGENTE DEL BANCO DE CAPACITORES

Modelo	BR6000-6R	BR7000-I			
Código	B44066R6006E230	B44066R7012E230			
Modelo		BR7000-I/S485			
Código		B44066R7112E230			
Tensión de fuente	110 230 V~	110 440 V ~			
Frecuencia	50/6	0 Hz			
Medición de voltaje	30 525 V~ (L-N) o (L-L)	30 440 V AC (L-N) 50 760 V AC (L-L)			
Consumo		5 VA			
Grado de protección	IP 54 (Frontal) -	IP 20 (Posterior)			
Temperatura de operación		+60 °C			
Pantalla	Retroiluminada 2 x 16 caracteres	Gráfica retroiluminada 128 x 64 píxeles			
Visualización simultanea de 3 parámetros	-	Selección en editor de visualización			
Lenguaje	CZ/E/ES/F/GER/	/NL/PL/PT/RU/TR			
Número de pasos (Relé)	6	12			
Número de pasos (Transistores)	_	_			
Relé Alarma/Mensaje	1/0	1 alarma, 1 mensaje (versión con interfaz)			
Relé independiente de ventilación	_	_			
Interfaz	-	RS485 en versión BR7000-I/S485			
2do set de parámetros	-	Solo en versión /S			
Medición de fases		fásico			
Control de fases		asico			
Encendido automático	Si	Si			
Prueba de arranque completa	Si	Si			
Reloj interno	-	-			
Osciloscopio (modo gráfico)	_	_			
Edición de interfaz	-	Si			
Botón de escape en panel frontal	_	Si			
Botón de ayuda con texto interactivo	-	Si			
Número de series de control pre- configuradas	20 series	20 series			
Editor de series de control	Si	Si			

BR7000 - I

Controladores BR6000 y BR7000

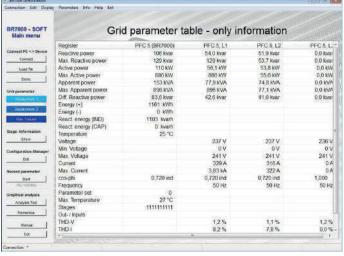
REGULACIÓN INTELIGENTE DEL BANCO DE CAPACITORES

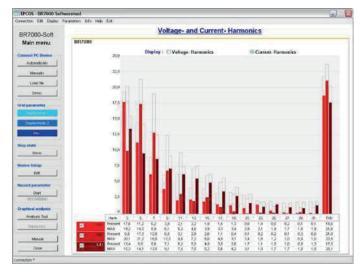
Modelo	BR6000-6R	BR7000-I
Código	B44066R6006E230	B44066R7012E230
Modelo		BR7000-I/S485
Código		B44066R7112E230
Parámetros medidos		
Tensión (V)	Alfanumérico: valor real	Alfanumérico: valor real
Corriente aparente (A)	Alfanumérico: valor real	Alfanumérico: valor real
Potencia reactiva (kvar)	Alfanumérico: valor real	Alfanumérico: valor real
Potencia activa (kW)	Alfanumérico: valor real	Alfanumérico: valor real
Potencia aparente (kVA)	Alfanumérico: valor real	Alfanumérico: valor real
Valor kvar a cos-ф objetivo	Alfanumérico: valor real	Alfanumérico: valor real
Energía	Alfanumérico: valor real	Alfanumérico: valor real
Frecuencia	Alfanumérico: valor real	Alfanumérico: valor real
Temperatura	Alfanumérico: valor real °C/°F	Alfanumérico: valor real °C/°F
Cos-ф actual	Alfanumérico: valor real	Alfanumérico: valor real
Cos-ф objetivo	Alfanumérico: valor real	Alfanumérico: valor real
Armónicas individuales hasta	19na	Impar hasta 33ra/ par e impar hasta 17ma; valor real / en % / gráfico
TDV-THD-I	Si	Valor real / en % / gráfico
Hora/Fecha	-	Solo BR7000-I/S485
Valores registrados		
Tensión máxima y mínima	Si	Si, versión /S con hora
Corriente máx.	-	Si, versión /S con hora
Máxima potencia activa	Si	Si, versión /S con hora
Máxima potencia reactiva	Si	Si, versión /S con hora
Máxima potencia aparente	Si	Si, versión /S con hora
Máximos valores de THD-V, THD-I	Si	Si, versión /S con hora
Temperatura máxima (°C)	Si	Si, versión /S con hora
Tiempo de operación de los capacitores	Si	Si
Número de maniobra de los contactores	Si	Si
Otros		
Tiempo de maniobra	1 1200 s	1 1200 s
Peso	1 kg	1 kg
Dimensiones (mm)	144 x 144 x 55 mm	144 x 144 x 55 mm
Software de computadora incluido	No	Solo versión BR7000-I/S485
Apto para CFP dinámico	No	No
Apto para TSM-LC-S por interfaz	No	No

Accesorios para BR6000 y BR7000

SOLUCIONES PARA LA CORRECCIÓN DEL FACTOR DE POTENCIA


BR7000-SOFT para Windows

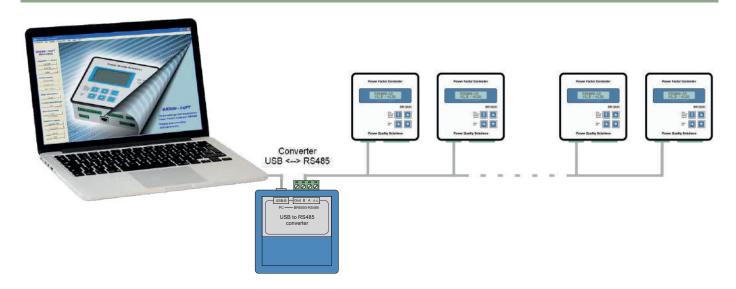

Este programa ofrece la posibilidad de realizar la configuración de los parámetros, registros, análisis, y visualización de los parámetros de red con una operación en línea a través de una PC. Es compatible con toda la serie de controladores BR7000. El software permite el almacenamiento y evaluación gráfica de todos los valores incluyendo funciones de exportación e impresión.


El espectro de armónicas puede ser visualizado como gráficos de barras con las distorsiones individuales de tensión y corriente. El administrador de configuración puede ser utilizados para una completa lectura, edición, almacenamiento, y escritura de todos los parámetros de controlador para la corrección del factor de potencia a través de una computadora. Toda la información puede ser almacenada en un archivo de configuración.

Características

- Conexión a RS485
- Administración de múltiples controladores
- Análisis práctico de los valores registrados
- Conexión directa a puerto USB de la PC a través de adaptador USB a RS485

Accesorios para BR6000 y BR7000


SOLUCIONES PARA LA CORRECCIÓN DEL FACTOR DE POTENCIA

Accesorios: Conversor USB a RS485					
Forma compacta en envase plástico					
28 x 66 x 66 mm (P x E x A)					
Aproximadamente 0,1 Kg.					
RS485 con terminal de 4 polos					
A, B, GND					
USB-B estándar, con cable de 1m incluido					
A través de la conexión USB con la PC					
Aproximadamente 40 mA, dependiendo de la cantidad de dispositivos conect dos y la longitud del cableado					
USB 2.0, retrocompatible					
Plug & play					
-10 + 60°C					
-20 + 75°C					
B44066R3333E230					

Conversor USB a RS485 para la conexión de controladores del factor de potencia BR7000, BR7000-I/S485, y BR7000-I-TH/S485 u otros dispositivos con interfases RS485 a PC por USB. Apto para **conexión con múltiples dispositivos.**

Ejemplo de diagrama de conexión

Accesorios para BR6000 y BR7000

SOLUCIONES PARA LA CORRECCIÓN DEL FACTOR DE POTENCIA

Accesorios: DataLogSD	
Características	
Diseño	Forma compacta en envase plástico
Dimensiones	28 x 66 x 66 mm (P x E x A)
Peso	Aproximadamente 0,1 Kg.
Fuente de alimentación	A través de interfase de BR7000, BR7000-I/S485, y BR7000-I-TH/S485
Parámetros de red almacenados	Tensión, corriente, potencia reactiva, efectiva y aparente, frecuencia, armónicos hasta 31 de tensión y corriente, cos φ, THD-V, THD-I, energía.
Parámetros del sistema de CFP almacenados	Temperatura del sistema, potencia de los pasos, monitoreo de conmutaciones del banco (horas de servicio de cada paso y cantidad de conmutaciones realizadas)
Contenido	DataLogSD, Tarjeta SD, CD con software para evaluación y 0,5m de cable.
Código de orden	B44066R1311E230

DataLogSD para la grabación, visualización y evaluación de los parámetros de red. Evaluación práctica de la información adquirida (almacenada en la tarjeta SD) a través del software para Windows.

Reactores - Filtros armónicos antiresonantes

PARA INSTALACIONES CON THD-V > 3%

El aumento en el uso de dispositivos con electrónica de potencia produce corrientes no lineales, influyendo y sobrecargando a la red con armónicos (contaminación de líneas).

La corrección del factor de potencia o la capacitancia del capacitor forman un circuito resonante en conjunto con el transformador alimentador. La experiencia muestra que típicamente la frecuencia autoresonante se encuentra entre 250 Hz y 500 Hz, es decir, en la región de la 5ta y 7ma armónica.

Tal resonancia puede derivar en los siguientes efectos indeseables:

- · Sobrecarga de los capacitores
- Sobrecarga de transformadores y equipamiento de transmisión.
- · Interferencia con sistemas de control, medición, computadoras y dispositivos eléctricos
- Distorsión de la tensión

Estos fenómenos resonantes pueden evitarse conectando capacitores en serie con reactores de filtro dentro de un sistema para la CFP. Estos sistemas llamados desintonizados son dimensionados de manera que la frecuencia auto-resonante se reubique por debajo de la señal fundamental.

Es por ello que para armónicos de mayor frecuencia el sistema se comporta de una manera puramente inductiva. Pero para la frecuencia base de 50 Hz el conjunto actúa puramente capacitivo, logrando así la corrección necesaria de energía reactiva.

Aplicaciones

- · Evitar condiciones de resonancia
- Filtros sintonizados y desintonizados
- Reducción de la distorción armónica (limpieza de red)
- · Reducción de las pérdidas de energía

Características

- Gran capacidad de carga armónica
- Bajo ruido
- Montaje conveniente
- Expectativa de vida prolongada
- · Protección por sobretemperatura

Datos técnicos y valores máximos Armónicos (DIN ENV VV61000-2-2) $V_3 = 0.5\% V_R, V_5 = 6.0\% V_R, V_7 = 5.0\% V_R, V_{11} = 3.5\% V_R, V_{13} = 3.0\% V_R$ Irms = $\sqrt{(|l_1|^2 + |l_3|^2 + ... + |l_{13}|^2)}$ Corriente efectiva Corriente fundamental I₁ = 1,06 . I_R (corriente del capacitor en 50 Hz) Protección por temperatura Microswitch (NC) Frecuencia 50/60 Hz Tensión 400, 440V **Potencia** 10 ... 100 kVAr Desintonía 5,67%, 7%, 14% Clase de protección Natural o forzada Refrigeración Temperatura ambiente + 40°C

Capacitor cilíndrico trifásico

DESCRIPCIÓN

La gama de capacitores Elecond (HD) ha sido diseñada para asegurar un largo servicio y ofrecer un alto rendimiento debido a sus características eléctricas mejoradas. Son condensadores auto-rege- nerantes con dieléctrico de polipropileno de bajas pérdidas, rellenos con gas inerte N2 e incorporan un sistema de desco- nexión por sobrepresión, el cual ofrece un máximo nivel de seguridad ante defectos, al cortar las 3 fases en caso de actuación.

Los capacitores se presentan montados en recipientes de aluminio provistos de saliente roscado M12 para su fijación y puesta a tierra. La conexión se realiza por regleta con bornes tipo morda- za. La placa de características del condensador incorpora un código QR, el cual permite la descarga del certifi- cado individual de verificación (ensayo de rutina) que, además, otorga una protección anticopia.

CARACTERÍSTICAS TÉCNICAS GENERALES

· Tensión Nominal

Frecuencia

Dieléctrico

Resistencias descarga

· Pérdidas dieléctricas

· Pérdidas totales

· Sobretensión máx.

Sobreintensidad máx. (1)

Sobreintensidad transitoria

· Nivel de aislamiento

· Tolerancia de potencia

Gama climática (2)

· Expectativa de vida

· Borne de Conexión

• Borne de Conexion

Fijación

· Grado de protección

Normas

460 V 50Hz

50Hz

Polipropileno

Integradas

≤0,2W/kVAR

≤0,4 W/kVAR

1,1 Un

2 In

400 In

3/8 kV

-5/+10%

- 40 / D (60° C)

> 150.000 horas

Tipo A: 16mm²; 3Nm max.;

Tipo B: 25mm2; 3Nm max.;

M12

IP20

IP54 (Con caperuza hasta 116mm Ø)

IEC 60831, EN 60831, UL810,

Certificación UL en curso

Notas

(1) Intensidad de corriente máxima durante 48 horas de operación (Tested as per IEC 60831-1 2014 Clause 13)

(2) Temperatura máxima IEC 60831-1 2014 Clause 4.1

40/D (60°C) Referido 60°C Temperatura puntual máxima

45 °C Temperatura media máxima por un período de 24 h

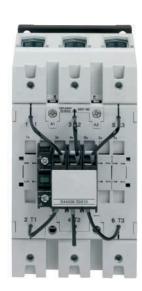
 $35\ ^{\circ}\text{C}$ Temperatura media máxima por un períosi de 1 año

Capacitor cilíndrico trifásico

CARACTERÍSTICAS TÉCNICAS ESPECÍFICAS

			50	Hz			C _N (*)	Bornes		
Referencia	460	460 V		60 V 400 V		440 V			υ _N (μF)	Dimensiones d x h (mm)
	Qn (kVAR)	In (A)	Qn (kVAR)	In (A)	Qn (kVAR)	In (A)	(μ1)	u x II (IIIIII)	(kg)	
EL505460	6,25	7,8	4,7	6,8	5,7	7,5	3 x 47,0	85 x 175	1,1	Α
EL507460	10	12,6	7,6	10,9	9,1	12,0	3 x 75,2	85 x 245	1,1	Α
EL510460	12,5	15,7	9,5	13,6	11,4	15,0	3 x 94,0	85 x 245	1,6	Α
EL512460	15	18,8	11	16,4	14	18,0	3 x 112,8	85 x 245	1,7	Α
EL515460	20	25,1	15	21,8	18	24,0	3 x 150,4	100 x 245	2,4	Α
EL520460	30	37,7	23	32,7	27	36,0	3 x 225,6	136 x 220	2,7	В
EL525460	33	41,4	25,0	36,0	30	39,6	3 x 248,2	136 x 261	2,9	В

(*) Capacidad Medida (Aparente) (Ver Nota Técnica: TS 03-020)


Diseñados para limitar las corrientes de inserción

Cuando se conecta un capacitor a una red de corriente alterna, el resultado es un circuito resonante, atenuado en una mayor o menor medida, produciendo una alta corriente de inserción. Esto ocurre en mayor medida cuando se maniobran en conjunto con otros en paralelo y si existen grandes corrientes de cortocircuito en la linea.

El uso de precontactos con resistencias en serie permiten precargar al capacitor evitando picos máximos de corrientes.

Esto influye de manera positiva en la expectativa de vida significativamente en conjunto con una mayor calidad de alimentación en la red. Se evitan transitorios y caídas de tensión producidos por cada maniobra. Luego de un periodo determinado se cierran los contactos principales y se desconectan los precontactos, disminuyendo las pérdidas y el calor producido.

Características

- Conexión del capacitor atenuada, aumentando su vida útil
- Excelente reducción de la corriente de inserción
- · Calidad de energía mejorada
- Mayor vida útil en los contactos principales del contactor
- · Pérdidas resistivas reducidas
- Resistencias bloqueadas en posición y protegidas a prueba de contactos accidentales
- · Contactos autolimpiantes
- Fácil acceso para la conexión de cables
- Rango de tensión: 400 hasta
 690 V
- Rango de potencia: 12.5

hasta 100 kvar

Certificaciones

- Standards: IEC/EN 60947 + VDE 0660
- UL-Approved (UL508)
- cUL archivo 224924
- ·CCC

Beneficios

- Terminales grandes para largas secciones de cable
- Box terminals para todos los contactores empezando desde 20/28kVAr
- Cubiertas para todas las partes móviles del contactor
- Indicador de operación por contacto auxiliar
- Blocks de contactos auxiliares laterales (1NO+1NC)
- · Montaje en riel DIN posible
- · Diseño compacto

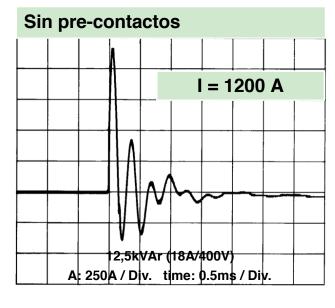
CARACTERÍSTICAS Y FUNCIONAMIENTO GENERAL DE LOS CONTACTOS

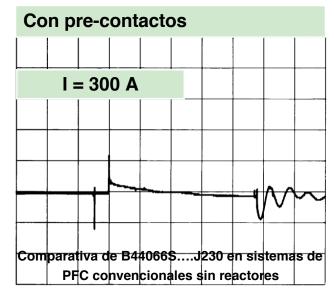
Modelos - Parámetros técnicos principales									
Potencia del capacitor a temperatura ambiente, tensión, 230 V a 50 / 60 Hz							Corriente nominal		Código
380 –	400 V	415 –	440 V	660 –	690 V				
+50 °C	+60 °C	+50 °C	+60 °C	+50 °C	+60 °C	+50 °C	+60 °C		
kvar	kvar	kvar	kvar	kvar	kvar	Α	Α	kg	
0–12.5	0–12.5	0–13	0–13	0–20	0–20	18	18	0.23	B44066S1810N230
10–20	10–20	10.5–22	10.5–22	17–33	17–33	28	28	0.50	B44066S2410N230
10–25	10–25	10.5–27	10.5–27	17–41	17–41	36	36	0.50	B44066S3210N230
20-33.3	20–33.3	23–36	23–36	36–55	36–55	48	48	0.90	B44066S5010N230
20–50	20–50	23–53	23–53	36–82	36–82	72	72	0.90	B44066S6210N230
20–75	20–60	23–75	23–64	36–120	36–100	108	87	0.90	B44066S7410N230
33–80	33–75	36–82	36–77	57–120	57–120	115	108	2.20	B44066S9010N230
33–100	33–90	36–103	36–93	57–148	57–148	144	130	2.20	B44066S9910N230

Contactos principales

Pre-Contactos 5 - 10 ms

Operación de cierre:

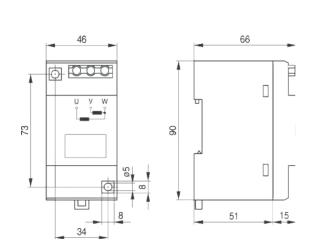

- Por medio de los pre-contactos, los picos de las corrientes de inserción que se producen en el cierte son atenuados por los resistores.
- · Los pre-contactos abren después que los contactos principales cierran.
- Un block de pre-contactos incrementa de protección contra polvo e incremente la confiabilidad.


Operación cerrado:

• No hay pérdidas de energía de los resistores porque permanecen desconectados.

Operación de apertura:

• No hay movimiento de los pre-contactos que permanecer abiertos.

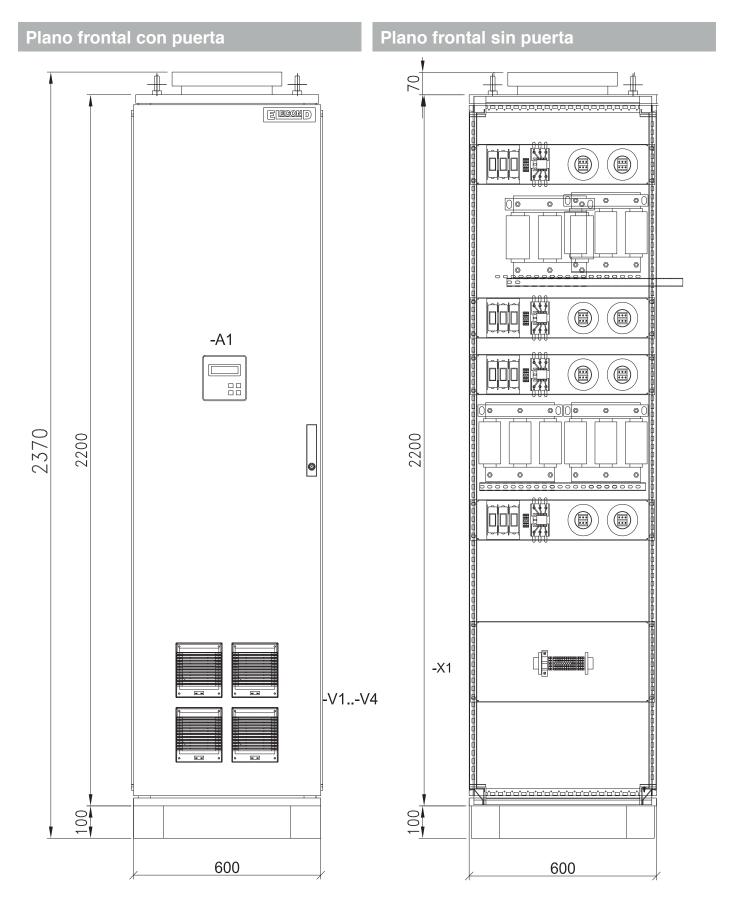

PARÁMETROS TÉCNICOS SEGÚN MODELOS

Datos técnicos									
Tipo			B44066	6****J23	D/J110/N2	230/N110			
Contactos principales	S1810	S2410	S3210	S5010	S6210	S7410	S9010	S9910	
Tensión nominal de aislación V _I - V _{Is}	[V AC]	690 ¹⁾	690 ¹⁾	690 ¹)	690 ¹⁾	690 ¹)	690 ¹)	1.000 1)	1.000 1)
Frecuencia admisible de operación	1/h	120	120	120	120	120	80	80	80
Vida media del contactor	Millones de operaciones	0,25	0,15	0,15	0,15	0,15	0,12	0,12	0,12
Sección de cable									
Sólido o Estándar	[mm²]	1,5–6	2,5–25	2,5–25	4–50	4–50	4–50	0,5–95/ 10–120	0,5–95/ 10–120
Flexible	[mm²]	1,5–4	2,5–16	2,5–16	10–35	10–35	10–35	0,5–70/ 10–95	0,5–70/ 10–95
Flexible en cables multipolares [mm²]		1,5–4	2,5–16	2,5–16	6–35	6–35	6–35	0,5–70/ 10–95	0,5–70/ 10–95
Cables por terminal		2	1	1	1	1	1	2	2
Rango operativo de bobinas magnéticas									
en múltiplos del voltaje de control V _s		0,85– 1,1	0,85– 1,1	0,85– 1,1	0,85– 1,1	0,85– 1,1	0,85– 1,1	0,85– 1,1	0,85– 1,1
Contactos auxiliares 1)									
Tensión nominal de aislación $V_{_{\! I}} V_{_{\! IS}}$	[V AC]	690 ¹)	690 ¹)	690 ¹)	690 ¹)	690 ¹)	690 ¹)	690 ¹⁾	690 ¹⁾
Corriente nominal I _{th}									
a temperatura ambiente									
máx. a 40 °C	I _{coth} [A]	16	10	10	10	10	10	10	10
máx. a 60 °C	I _{coth} [A]	12	6	6	6	6	6	6	6
Categoría de utilización AC15									
220 to 240 V	I _{coth} [A]	12	3	3	3	3	3	3	3
380 to 440 V	I _{coth} [A]	4	2	2	2	2	2	2	2
Protección contra cortocircuitos									
Categoría de fusible									
lento, gL (gG)	I _{coth} [A]	25	20	20	20	20	20	20	20
Contactos auxiliares	NA / NC	1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0

IEC 947-4-1, IEC 947-5-1, EN 60947-4-1, EN 60947-5-1, VDE 0660.

¹⁾ Aplica a redes con neutro en punta de estrella, categoría de sobretensión I a IV, severidad de polución 3 (industrial estándar)

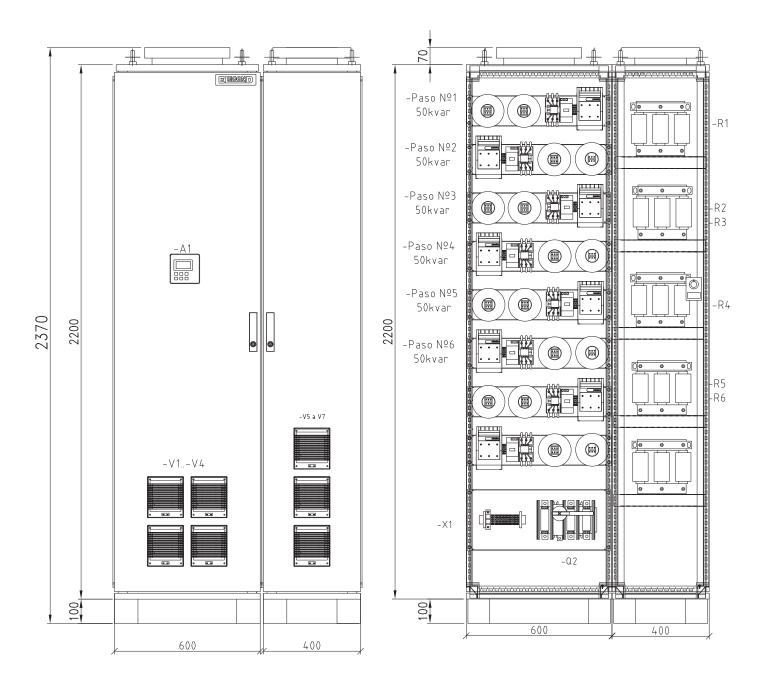
DISEÑADOS PARA UNA RÁPIDA RECONEXIÓN DE LOS CAPACITORES



Tensión	V _R	230 690 V				
Configuración interna		2 bobinados en V				
Resistencia	R	7,5 k Ω				
Tiempo de descarga	t	230 V: hasta 25 kvar < 10 s / hasta 50 kvar < 20 s / hasta 100 kvar < 40 s 400 525 V: hasta 25 kvar < 5 s / hasta 50 kvar < 10 s / hasta 100 kvar < 20 s 525 690 V: hasta 25 kvar < 3 s / hasta 50 kvar < 6 s / hasta 100 kvar < 12 s				
Frecuencia	f	50/60 Hz				
Pérdidas	Р	< 1,6 W				
Corriente	I	< 3,4 mA				
Número de descargas permitidas		1 por minuto de 100 kVAr				
Clase de aislación	R _{AIS}	Ta = + 40°C				
Refrigeración		Natural o forzada				
Sección de cable		0,75 2 x 2,5 mm ²				
Terminales						
Temperatura ambiente		- 25 + 55°C				
Dimensiones		90 x 46 x 66 mm				
Peso		0,5 Kg.				

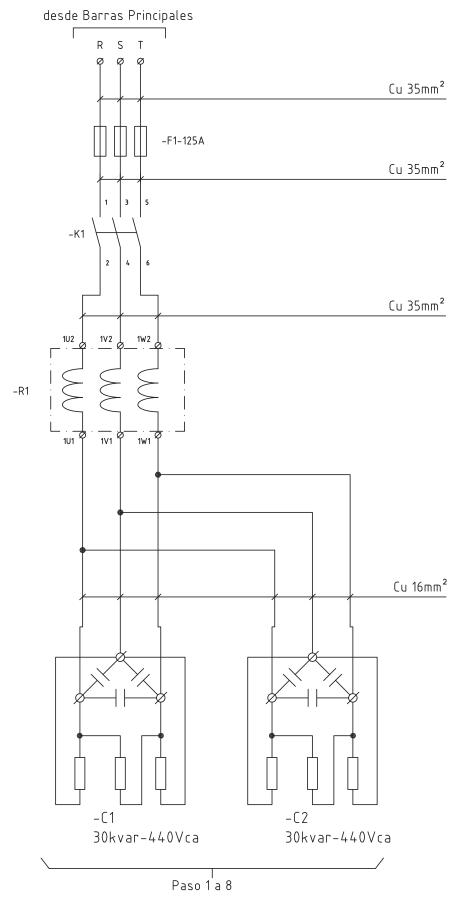
Plano dimensional 2RMKX-4000

400 KVAR (8 PASOS DE 50 KVAR) 1000 MM DE ANCHO



Plano dimensional 2RMKX-4000

400 KVAR (8 PASOS DE 50 KVAR) 1000 MM DE ANCHO


Plano frontal con puerta

Plano frontal sin puerta

Plano dimensional 2RMKX-4000

400 KVAR (8 PASOS DE 50 KVAR) 1000 MM DE ANCHO

Anexo: Instrucciones de montaje

CONDICIONES PARA LA CORRECTA COLOCACIÓN DEL BANCO

1- Cableado de potencia.

La sección mínima a utilizar se encuentra descripta en el diagrama de instalación de cada equipo en particular.

No es necesario verificar secuencia de la terna para el conexionado al interruptor o seccionador con el cual este equipado el corrector del factor de potencia.

2-Instalación y dimensionamiento del transformador de corriente.

El dimensionamiento del transformador de corriente será función directa de la corriente nominal de su sistema troncal, independientemente de la potencia en kvar del banco a instalar, por ejemplo, si en su instalación circulan 460 Amperes máximos el transformador de corriente a instalar será por ejemplo de 500/5 Amperes. Por favor si usted duda en la elección del mismo comuníquese con nuestro departamento de servicio al cliente. La instalación del mismo se deberá realizar de la siguiente manera: ubicarlo a la salida del interruptor principal de su instalación en baja tensión y siempre por encima de donde se conectó el cableado de potencia de banco de capacitores (recuerde que el banco de capacitores se instala en el sistema como una carga trifásica mas). El cableado desde el transformador de corriente a la bornera del equipo debe realizarse con un conductor bipolar o unipolar de 2,5mm2 si este se encuentra a una distancia de hasta 4 mts., si esta es mayor utilizar conductor de 4 o 6 mm2. En resumen, el equipo cuenta con una bornera componible en donde acometerán L y K desde el transformador de corriente. IMPORTANTE: El transformador de corriente debe instalarse sobre la fase R (denominamos fase R al primer conductor de potencia conectado al banco de izquierda a derecha mirando desde el frente del equipo).

3- Conexión del cable de neutro al banco de capacitores.

El cable de neutro se conectará a la bornera componible prevista en el banco de capacitores para tal fin, su función es alimentar las etapas de comando del sistema, su sección 2,5mm2 mínimo.

4-Conexión del conductor de tierra.

Como todo equipamiento eléctrico debe conectarse a tierra, la sección del conductor de tierra debe ser calculada en función del nivel de cortocircuito monofásico de cada instalación en particular, recomendamos utilizar como mínimo una sección de 10mm2.

5-Nota Importante:

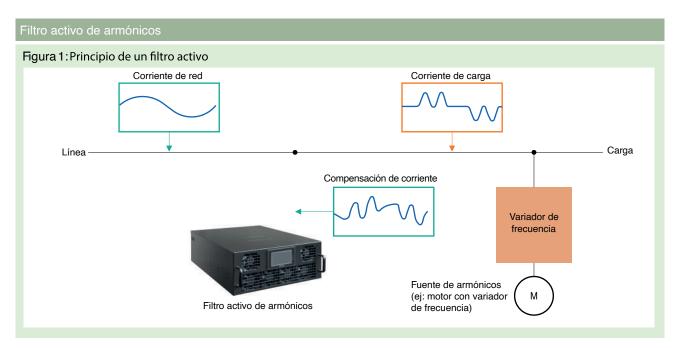
Se ha verificado que durante el traslado los equipos están sometidos a vibraciones y movimientos no deseados, por lo que recomendamos que luego de colocar el equipo en su ubicación definitiva, se deba comprobar que sus componentes estén en su correcta posición, especialmente las resistencias de descarga ubicadas en la bornera de los capacitores. Revisar que las conexiones de los conductores estén bien realizadas sin cables o tornillos flojos. Para verificar esto retorquear las conexiones según la tabla de torque indicada en la etiqueta adosada al equipo. Luego de transcurridos 10 días de funcionamiento del mismo, comprobar nuevamente los valores de torque recomendados. Como mantenimiento preventivo, esta operación es necesaria realizarla cada 6 meses.

6-Seteo del regulador Varimétrico.

Ver hoja técnica acerca del regulador electrónico de potencia reactiva que utilizara su equipo.

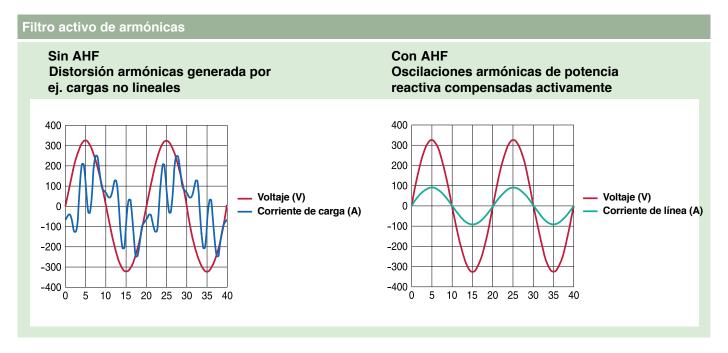
Anexo: Filtros de potencia activa

SOLUCIONES PARA LA CFP CON THD-V > 6%


Diseñado para eliminar oscilaciones armónicas y por consecuencia reducir costos operativos.

Con el monitoreo de la señal de corriente puede compensar las perturbaciones eléctricas sobre las corrientes medidas. El filtro asegura la elimicación de las armónicas independientemente de la cantidad de cargas en la red. A su vez se encarga de realizar la corrección del factor de potencia y el balance de cargas entre fases, mejorando de esta manera la eficiencia del sistema y reduciendo la contaminación de armónicas.

En el pasado, la mayoría de las cargas de los consumidores poseían un comportamiento netamente lineal. Esto implica que al ser conectadas a una tensión de forma sinusoidal, la corriente también se comporta de manera sinusoidal. Por contraparte, en la actualidad, el uso de electrónica de potencia ha aumentado significativamente y continuará volviéndose la norma por las mejoras en eficiencia que ofrece. Estos dispositivos usualmente son no lineales, es decir, que cuando son alimentados con una tensión sinusoidal las mismas producen corrientes no-sinusoidales, creando así problemas a otros dispositivos conectados en la misma red.


Además de los filtros pasivos, el aumento de filtros activos es cada vez mayor donde el cos Φ

Anexo: Filtros de potencia activa

SOLUCIONES PARA LA CFP CON THD-V > 6%

Características:

- Compensación de armónicos hasta el orden 50° (seleccionables independientemente)
- · Compensación de flicker
- Compensación de potencia reactiva ultrarápida (inductiva y capacitiva)
- Balance de cargas entre fases y descarga de neutro
- Diseño compacto
- · Sistema modular desde 60A hasta 600A
- · Detección de resonancia de red
- Control digital avanzado con algoritmo SDC (Control selectivo directo)
- · Interconexión a través de sistema ethernet y ethercat
- · Menú de operación fácil
- · Alta performance y confiabilidad
- Protección integrada contra sobre-cargas, sobre-tensiones y caídas de tensión
- · Instalación sencilla
- Bajos costos de mantenimiento debido a su concepto modular y bajas pérdidas

Aplicaciones típicas

- · Data centers (Servidores)
- UPS: Sistemas de energía ininterrumpida (Fuentes cargadoras de baterías)
- Generción eléctrica alternativa (ej.: Turbinas eólicas y paneles fotovoltaicos)
- Edificios de oficinas y centros comerciales (Armónicas del 3er orden, cancelación triple y descarga del conductor de neutro)
- Manufactura de equipamiento sensible (ej.: producción de semiconductores y obleas de silicio)
- Maquinaria de producción industrial
 Sistemas de soldadura eléctrica
 Maquinaria para la industria plástica (ej.: Extrusoras, moldes para inyección)

Sistemas de seguridad


- · Protecciones contra:
- Sobrecargas
- Cortocircuitos internos
- Sobrecalentamiento
- Sobretensión y caídas de tensión
- Puente inversor
- Resonancia
- · Alarma por falla de ventilación
- · Seguridad y confiabilidad garantizada

Anexo: Filtros de potencia activa

SOLUCIONES PARA LA CFP CON THD-V > 6%

 Panel de control y pantalla LCD fácil de usar con una pantalla táctil LCD intuitiva basada en menús de 7 pulgadas

La puesta en marcha, así como la selección y configuración de parámetros, se pueden realizar convenientemente en la pantalla táctil. Además, el panel LCD presenta formas de onda y una pantalla gráfica de espectro armónico

- Autodiagnóstico de fallas, así como registro de fallas y eventos en tiempo real
- Control térmico riguroso que permite una mayor fiabilidad de funcionamiento para el sistema de filtro de potencia activo.
- Concepto de diseño modular para mayor confiabilidad y disponibilidad.

- Protecciones bien pensadas que garantizan la máxima seguridad del sistema en caso de condiciones de trabajo anormales, que incluyen:
- Sobretensión y subtensión de CA en la red eléctrica Sobretensión de CC en el bus de CC Sobrecorriente y sobretemperatura del inversor IGBT, reactor, sobretemperatura de condensadores
- · Limitación automática de corriente sin riesgo de sobrecarga
- Enlace de fibra óptica entre la placa de control principal y los módulos de potencia individuales para proporcionar aislamiento galvánico completo e inmunidad EMI.

Componentes de protección entrantes y filtro de salida

Reactores PWM y tablero de control

Módulo inversor con cubierta metálica para una mayor protección

ELECOND CAPACITORES S.A.

CABA, Buenos Aires, Argentina

Mail: info@grupoelecond.com

Tel: (011) 7078-0390

www.grupoelecond.com